

Department of Electronics and Communication Engg.

LESSON PLAN

Session: April –July, 2023

Semester: 4th

Name:_____

University Roll Number: _____

BUDDHA INSTITUTE OF TECHNOLOGY

CL-1 Sector - 7, GIDA, Gorakhpur - 273209 (U.P) Phones : (0551) 2580413-415

Index

Timetable

Evaluation scheme

- Subject1- Mathematics-IV
- Subject 2- Communication Engineering
- Subject 3- Analog Circuits
- Subject 4- Signals and Systems
- Subject 5- Technical Communication
- Subject 6- Python Programming
- Lab 1 Communication Engineering Lab
- Lab 2 Analog Circuits Lab
- Lab 3 Signals and Systems Lab

Day / Time	9:05-10:00 AM	10:00-10:55 AM		11:10-12:05 PM	12:05-01:00 PM	01:00-1:55 PM	L	2:40-3:35 PM	3:35-4:30 PM
Monday							U		
Tuesday			в				N C		
Wednesday			R				н		
Thursday			E				в		
Friday			к				R		
							E		
Saturday							к		

TIME TABLE

EVALUATION SCHEME

Subject Code	Subject	Sessional Marks	Exam Marks	Total Marks
	THEORY SUBJECTS			
KAS 402	Mathematics-IV	50	100	150
KEC401	Communication Engineering	50	100	150
KEC402	Analog Circuits	50	100	150
KEC-403	Signal System	50	100	150
KAS401	Technical Communication	50	100	150
KNC 402	Python Programming	50		
PRACTICAL/DE	SIGN/DRAWING	1	I	1
KEC 451	Communication Engineering Lab	25	25	50
KEC 452	Analog Circuits Lab	25	25	50
KEC 453	Signal SystemLab	25	25	50

Buddha Institute of Technology

Gorakhpur

Department of Electronics and Communication Engineering ALLOTTMENT BASED ON COMPETENCY SKILLS Academic Session: April 2023 – July 2023

Name of the Staff	Dr. Arun Kumar Pandey
Area of Specialization	Mathematical Modeling
Subject Allotted	Mathematics-IV

Sl. #	Course Code	Course Title	Semester	Theory
1.	KAS402	Mathematics IV	IV Semester	Theory

Course Outcome and Programme Outcome

Program	: B. Tech.
Branch	: ECE
Semester	: IV
Session	: 2022-23
Name of the Course	: MATHEMATICS-IV
Code	: KAS402
Name of the Course Instructor	: Dr. Arun Kumar Pandey
Designation	: Associate Professor
Department	: Applied Science and Humanities

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

KAS402.1	Apply the basic concept of partial differential equation to solve mathematical problems.
KAS402.2	Use the concept of partial differential equations to solve engineering problems.
KAS402.3	Apply the basic concept of statistical techniques to solve statistical problems.
KAS402.4	Use the concept of probability and probability distributions functions to solve engineering problems.
KAS402.5	Apply the basic concept of hypothesis testing and statistical quality control technique for statistical
	problems.

Buddha Institute o		1	SUTURE OF THE		
Department: Electi	conics and Comm				
Academic Semeste	r: April 2023- Jul		ВІТ		
Semester: IV	Section: 3A & 3	B Course	Code: KAS402	Course: Ma	thematics IV
Course Instructor: Dr. Arun Kumar Pandey			Contact Hours	/week: 05+01	# of credits: 03
CIE Marks: 50 SEE I			100	Exam Hou	rs: 03

Prerequisites if any: Knowledge of Mathematics I and II of B. Tech or equivalent

Content delivery:

Chalk & Board, Online Video Lectures

	COURSE SYLLABUS:		
Module No	Contents of Module	Hrs	COs
1	Partial Differential Equations : Origin of Partial Differential Equations, Linear and Non Linear Partial Equations of first order, Lagrange's Equations, Charpit's method, Cauchy's method of Characteristics, Solution of Linear Partial Differential Equation of Higher order with constant coefficients, Equations reducible to linear partial differential equations with constant coefficients.	15	C01
2	Applications of Partial Differential Equations : Classification of linear partial differential equation of second order, Method of separation of variables, Solution of wave and heat conduction equation up to two dimension, Laplace equation in two dimensions, Equations of Transmission lines.	15	CO2
3	Statistical Techniques I: Introduction: Measures of central tendency, Moments, Moment generating function (MGF), Skewness, Kurtosis, Curve Fitting, Method of least squares, Fitting of straight lines, Fitting of second degree parabola, Exponential curves, Correlation and Rank correlation, Regression Analysis: Regression lines of y on x and x on y, regression coefficients, properties of regressions coefficients and non linear regression.	15	CO3
4	Statistical Techniques II: Probability and Distribution: Introduction, Addition and multiplication law of probability, Conditional probability, Baye's theorem, Random variables (Discrete and Continuous Random variable) Probability mass function and Probability density function, Expectation and variance, Discrete and Continuous Probability distribution: Binomial, Poission and Normal distributions.	17	CO4
5	Statistical Techniques III : Sampling, Testing of Hypothesis and Statistical Quality Control: Introduction, Sampling Theory (Small and Large), Hypothesis, Null hypothesis, Alternative hypothesis, Testing a Hypothesis, Level of significance, Confidence limits, Test of significance of difference of means, T-test, F-test and Chi- square test, One way Analysis of Variance (ANOVA).Statistical Quality Control (SQC), Control Charts, Control Charts for variables (X and R Charts), Control Charts for Variables (p, np and C charts).	13	CO5

KAS402.1	Apply the basic concept of partial differential equation to solve mathematical problems.
KAS402.2	Use the concept of partial differential equations to solve engineering problems.
KAS402.3	Apply the basic concept of statistical techniques to solve statistical problems.
KAS402.4	Use the concept of probability and probability distributions functions to solve engineering problems.
KAS402.5	Apply the basic concept of hypothesis testing and statistical quality control technique for statistical problems.

Mapping of CO v/s PO:

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
KAS402.1	2	2	-	-	-	-	-	-	-	-	-	-
KAS402.2	2	2	-	-	-	-	-	-	-	-	-	-
KAS402.3	2	2	-	-	-	-	-	-	-	-	-	-
KAS402.4	2	2	-	-	-	-	-	-	-	-	-	-
KAS402.5	2	2	-	-	-	-	-	-	-	-	-	-

Correlation levels: 1-Slight (Low) 2-Moderate (Medium) 3-Substantial (High)

Mapping of CO v/s PSO:

	PSO1	PSO2
KAS402.1	1	1
KAS402.2	1	1
KAS402.3	1	1
KAS402.4	1	1
KAS402.5	1	1

Gap in the syllabus	NOT APPLICABLE
---------------------	----------------

Topics to be covered	NOT APPLICABLE
beyond syllabus	

Assessment Methodologies:

Sl. No.	Description	Туре
1	Student Assignment	Direct
2	Internal assessment	Direct
3	University exam	Direct
4	Student feedback	Indirect
5	Alumni feedback	Indirect
6	Employers feedback	Indirect

LESSON PLAN

Lecture #	Module#	Topics	RBT Levels	Course Outcome Mapping	Planned Date	Actual Date	Faculty Sign	Remarks
1		Origin of PDE						
2		Problems						
3	Linear PDE of first order							
4		Problems						
5		Problems Problems						
		Tutorial						
6		Non-linear PDE of First order						
7		Lagrange's equations						
8		Charpit's method						
9		Cauchy's method of characteristics	L3 C01					
10	1	Problems	L3	C01				
		Tutorial						
11		Solution of Linear Partial Differential equation of Higher order with constant coefficients						
12		Problems						
13		Equations reducible to linear partial differential equations with constant coefficients						
14		Problems						
15		Problems						
		Tutorial						
16		Classification of linear PDE of Second order						
17		Problems						
18		Method of separation of variables						
19		Problems						
20		Problems						
		Tutorial						
21	2	Solution of Wave equation up to two dimension	L3	CO2				
22		Problems						
23		Solution of heat conduction equation up to two dimension						
24		Problems						
25		Problems						
		Tutorial						

26		Laplace equation in two dimensions				
27		Problems				
28		Equations of Transmission lines				
29		Problems				
30		Problems				
		Tutorial				
31		Introduction, Measures of central tendency				
32		Moments				
33		Moment generating function				
34		Problems				
35		Skewness, Kurtosis				
		Tutorial				
36		Curve Fitting, Method of least squares				
37		Problems				
38		Fitting of straight lines, parabola and exponential curves				
39	3	Problems	L3	CO3		
40		Correlation and Rank correlation, Regression Analysis				
		Tutorial				
41		Problems				
42		Regression coefficient and Problems				
43		Properties of regression coefficients				
44		Non-linear regression				
45		Problems				
		Tutorial				
46		Introduction, Addition and multiplication law of probability				
47		Conditional probability, Baye's theorem,				
48		Problems				
49	4	Random variables (Discrete and continuous Random variable)	L3	C04		
50	4	Problems				
		Tutorial				
51		Probability mass function				
52		Probability density function				
53		Problems				

54		Expectation and variance				
55		Problems				
		Tutorial				
56		Discrete and continuous Probability distribution				
57		Binomial distributions				
58		Problems				
59		Poisson distributions				
60		Problems				
		Tutorial				
61	-	Normal distributions				
62		Problems				
63		Introduction, Sampling theory (Small and large)				
64		Hypothesis (Null & Alternate)				
65		T-test				
		Tutorial				
66		Problems				
67		F-Test				
68		Problems				
69		Chi-square test & Problems				
70		Problems				
	5	Tutorial	L3	CO5		
71		ANOVA				
72		Problems				
73		Statistical Quality Control, Control Charts, Control Charts for Variables (X and R charts)				
74		Problems				
75		Control Charts for Variables (p, np and C charts)				
		Tutorial				

*L1 – Remembering; L4 – Analysing; Literature:

L2 – Understanding; L5 – Evaluating; L3 – Applying; L6 - Creating

Text Books

- **1. E. Kreyszig:** Advanced Engineering Mathematics; John Wiley & Sons.
- 2. R.K. Jain & S.R.K. Iyenger: Adnanced Engineering Mathematics, Narosa Publishing House.
- 3. C.L.Liu: Elements of Discrete Mathematics; Tata McGraw- Hill Publishing Company Limited, New Delhi.
- **4. S. Lipschutz, M.L. Lipson and Varsha H. Patil:** Discrete Mathematics; Tata McGraw- Hill Publishing Company Limited, New Delhi
- **5. B. Kolman , Robert C. Busby & S. C. Ross:** Discrete Mathematical Structures' 5th Edition, Perason Education (Singapore), Delhi, India.

Reference Books

- 1. B.S. Grewal: Higher Engineering Mathematics; Khanna Publishers, New Delhi.
- 2. B.V. Ramana: Higher Engineering Mathematics; Tata McGraw- Hill Publishing Company Limited, New Delhi.
- 3. Peter V.O' Neil: Advanced Engineering Mathematics, Thomas (Cengage) Learning.
- **4. Kenneth H. Rosem:** Discrete Mathematics its Application, with Combinatorics and Graph Theory; Tata McGraw- Hill Publishing Company Limited, New Delhi.

Assessment rubrics that is going to be adopted for direct attainment is depicted in below table

Level of Achievement	Elaboration on Course Grading Description	Bench Mark Set (Out of 100)
Excellent (A)	Excellent (A) The Student's performance is outstanding in almost all the intended course learning outcomes	
Good (B)	The student's performance is good in most of the intended course learning outcomes.	45 to 59
Marginal (C)	The student's performance is barely satisfactory. It marginally meets the intended course learning outcomes	30 to 44
Fail (F)	The Students performance is inadequate. Student fails to meet many of the intended course learning outcomes	Less than 30

Buddha Institute of Technology

Gorakhpur Department of Electronics & Communication Engineering ALLOTTMENT BASED ON COMPETENCY SKILLS Academic Session April - July 2023

Name of the Staff	ANIL KUMAR CHAUDHARY
Area of Specialization	Principles of Communication, Optical Communication, Data Communication, Electronic Devices , Communication Engineering
Subject Allotted	COMMUNICATION ENGINEERING

Sl.	Course Code	Course Title	Semester	Theory
#				
1	KEC401	Communication Engineering	IV-A	Theory
2	KEC401	Communication Engineering	IV-B	Theory
3	KEC 451	Communication Engineering Lab	IV-A	Lab
4	KEC 451	Communication Engineering Lab	IV-B	Lab

Course Outcome and Programme Outcome

Program	: B. Tech.
Branch	: EC
Semester	: IV
Session	: 2022-23
Name of the Course	: Communication Engineering
Code	: KEC-401
Name of the Course Instructor	: Mr. Anil Kumar Chaudhary
Designation	: Assistant Professor
Department	: Electronics & Communication Engineering

Description of the Course Outcome:

СО	After completion of the course students will be able to:
KEC-401.1	Understand the concepts of amplitude modulation in communication engineering.
KEC-401.2	Utilize the concept of angle modulation to find the parameters like modulation index, bandwidth and frequency components.
KEC-401.3	Apply the concept of probability and random process to find the noise in communication systems.
KEC-401.4	Illustrate the sampling process and various pulse modulation techniques like PCM, PWM, PPM.
KEC-401.5	Explain the concept of digital modulation signals and techniques like ASK, PSK and FSK.

Buddha Institute of Technology, Gorakhpur					Sustill	ITE OF TER
Department: Electronics & Communication Engg.						
Academic Semester: April - July 2023						AKNYUL
Semester: IV	Section: A+B	Course Code:	KEC-401		: COMMUNI EERING	ICATION
Course Instructor: MR. ANIL KUMAR CHAUDHARY			Contact	Hours /we	eek: 5+1	# of credits: 3
CIE Marks: 50					Exam Hour	rs: 3

Prerequisites if any:						
Code No Course Name Description Semester						
NA	NA	NA	NA			

Content delivery:	Chalk & Board

	COURSE SYLLABUS:					
ModuleNo	Contents of Module	Hrs	COs			
1	Review of signals and systems, Overview of analog communication system Principles of modulation systems and need of modulation, Principles of amplitude modulation systems Frequency domain representation of signals, AM Receiver, TRF Receiver, Superhetrodyne receiver, AM transmitter, DSB modulations balance mode, DSB modulations ring modulation ,SSB modulations, VSB modulations	8	CO1			
2	Angle modulation, Tone modulated FM signal, Tone modulated PM signal, Representation of FM and PM signals, FM Modulators, Indirect FM Modulators, Spectral characteristics of angle modulated signals, FM Demodulators, Balance Slope Detector, Foster-Seeley Discriminator, PLL FM demodulator, Stereo FM transmitter & Receiver	8	C02			
3	Review of probability and random process, Gaussian and white noise characteristics, noise in amplitude modulation systems, noise in frequency modulation systems, pre-emphasis and de-emphasis, threshold effect in angle modulation.	8	CO3			
4	Sampling process, Pulse modulation, Pulse amplitude modulation, Pulse position modulation, Pulse width modulation, Pulse width demodulation, Pulse amplitude and pulse code modulation (PCM), Differential pulse code modulation, Delta modulation, Adaptive delta modulation, Noise considerations in PCM, Digital multiplexers,	8	CO4			
5	Digital modulation schemes- phase shift keying, frequency shift keying, quadrature amplitude modulation, continuous phase modulation and minimum shift keying.	8	CO5			

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

C01	Understand the concepts of amplitude modulation in communication engineering.
CO2	Utilize the concept of angle modulation to find the parameters like modulation index, bandwidth and frequency components.
CO3	Apply the concept of probability and random process to find the noise in communication systems.
CO4	Illustrate the sampling process and various pulse modulation techniques like PCM, PWM, PPM.
CO5	Explain the concept of digital modulation signals and techniques like ASK, PSK and FSK.

Mapping of CO v/s PO v/s PSO

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
KEC-401.1	2	1	1	1	2	0	0	0	0	0	0	1	2	1	1
KEC-401.2	2	1	1	1	1	0	0	0	0	0	0	1	2	1	1
KEC-401.3	2	2	2	1	2	0	0	0	0	0	0	1	1	2	1
KEC-401.4	1	1	1	1	1	0	0	0	0	0	0	1	2	2	1
KEC-401.5	1	1	2	1	1	0	0	0	0	0	0	1	2	1	1
Average	1.6	1.2	1.4	1.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.8	1.4	1.0

Correlation levels: 1-Slight (Low) 2-Moderate (Medium)

3-Substantial (High)

Gap in the syllabus	NA

Topics to be covered	NA
beyond syllabus	

Assessment Methodologies:

Sl. No.	Description	Туре
1	Student Assignment	Direct
2	Internal assessment	Direct
3	University exam	Direct
4	Student feedback	Indirect
5	Alumni feedback	Indirect
6	Employers feedback	Indirect

LESSON PLAN

1Review of signals and system2Overview of analog communication system3Overview of digital communication system4Principles of modulation system5Principles of amplitude modulation systems6Principles of amplitude modulation systems718Superhetrodyne receiver9Tutorial 110AM transmitter11DSB modulations balance modulation12DSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal19Signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224FM Demodulators25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation33Pulse width modulation	RBT Levels	Course Outcom e	Planned Date	Actual Date	Referen ces	Faculty Sign	Remarks
2Overview of analog communication system3Overview of digital communication system4Principles of modulation system5Principles of amplitude modulation systems6Principles of amplitude modulation systems6Principles of amplitude modulation systems718AM Receiver, TRF Receiver9Tutorial 110AM ransmitter11DSB modulations balance modulation12Modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal19Signals20FM Modulators21Indirect FM Modulators23224FM Demodulator25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Revision30Tutorial 431Sampling process32Pulse position modulation		e Mappin g					
2communication system3Overview of digital communication system4and need of modulation system5Principles of amplitude modulation systems6Principles of amplitude modulation systems711AM Receiver, TRF Receiver8Superhetrodyne receiver9Tutorial 110AM transmitter11DSB modulations balance modulation13SSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal19Signals20FM Modulators21Indirect FM Modulators23224FM Demodulator25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation	.S		10/04/23		T1		
3Communication system3Overview of digital communication system4Principles of modulation system5Principles of amplitude modulation systems6Principles of amplitude modulation systems716Principles of amplitude modulation systems718Superhetrodyne receiver9Tutorial 110AM Receiver, TRF Receiver9DSB modulations balance modulation11DSB modulations12DSB modulations13SSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal19Signals20FM Modulators21Indirect FM Modulators232474FM Demodulator25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Revision30Tutorial 431Sampling process32Pulse amplitude modulation			11/04/22		T1		
3communication system4Principles of modulation system5Principles of modulation6Principles of amplitude modulation systems716Principles of amplitude modulation systems717AM Receiver, TRF Receiver9Tutorial 110AM transmitter11DSB modulations balance modulation12DSB modulations ring modulation13SSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal Representation of FM and PM signals20FM Modulators21Indirect FM Modulators232424FM Demodulator25Balance Slope Detector Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse position modulation			11/04/23				
4Communication system4Principles of modulation system5Principles of amplitude modulation systems6Principles of amplitude modulation systems716Principles of amplitude modulation systems7AM Receiver, TRF Receiver9Tutorial 110AM transmitter11DSB modulations balance modulation12DSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal Representation of FM and PN signals20FM Modulators21Indirect FM Modulators232424FM Demodulators25Balance Slope Detector26Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse position modulation			12/04/23		T1		
4and need of modulation5Principles of amplitude modulation systems6Principles of amplitude modulation systems7AM Receiver, TRF Receiver9Tutorial 110AM transmitter11DSB modulations balance modulation12DSB modulations balance modulation13SSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal19Spectral characteristics of am modulators20FM Modulators21Indirect FM Modulators22Spectral characteristics of am modulated signals23Tutorial 324FM Demodulators25Balance Slope Detector Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation			12/04/23				
and need of modulation5Principles of amplitude modulation systems6Principles of amplitude modulation systems716Frequency domain representation of signals7AM Receiver, TRF Receiver9Tutorial 110AM transmitter11DSB modulations balance modulation12DSB modulations balance modulation13SSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal Representation of FM and PM signals20FM Modulators21Indirect FM Modulators23Z424FM Demodulators25Balance Slope Detector Foster-Seeley Discriminator26Freevision27PLL FM demodulator28Revision30Tutorial 431Sampling process32Pulse amplitude modulation	ems		13/04/23		T1		
3modulation systems6Frequency domain representation of signals718AM Receiver, TRF Receiver9Tutorial 110AM transmitter11DSB modulations balance modulation12DSB modulations balance modulation13SSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal19Spectral characteristics of an modulators20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23245Balance Slope Detector26FM Demodulators27PLL FM demodulator28Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation			15/04/25				
6Imodulation systems71Frequency domain representation of signals7AM Receiver, TRF Receiver8Superhetrodyne receiver9Tutorial 110AM transmitter11DSB modulations balance modulation12DSB modulations balance modulation13SSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal19Spectral characteristics of an modulators20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23245Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Revision30Tutorial 431Sampling process32Pulse amplitude modulation			15/04/23		T1		
6representation of signals71AM Receiver, TRF Receiver8Superhetrodyne receiver9Tutorial 110AM transmitter11DSB modulations balance modulation12DSB modulations ring modulation13SSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal Representation of FM and PM signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224FM Demodulators25Balance Slope Detector Foster-Seeley Discriminator26Yereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation			- / - / -				
71AM Receiver, TRF Receiver Superhetrodyne receiver9Tutorial 110AM transmitter11DSB modulations balance modulation12DSB modulations balance modulation13SSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal19Signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals232424FM Demodulators25Balance Slope Detector26Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse position modulation			17/04/23				
8Superhetrodyne receiver9Tutorial 110AM transmitter11DSB modulations balance modulation12DSB modulations ring modulation13SSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal19Signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224FM Demodulators25Balance Slope Detector26Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse position modulation	L1	CO1	18/04/23		T1		
9Tutorial 110AM transmitter11DSB modulations balance modulations ing modulation12DSB modulations ring modulation13SSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal Representation of FM and PM signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224FM Demodulators25Balance Slope Detector Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation			19/04/23		T1		
11DSB modulations balance modulation12DSB modulations ring modulation13SSB modulations14VSB modulations15Revision16Tutorial 217Angle modulated FM signal18Tone modulated FM signal19Representation of FM and PM signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224FM Demodulators25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation			20/04/23				
12DSB modulations ring modulation13DSB modulations ring modulation14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal Representation of FM and PM signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224FM Demodulators25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation			24/04/23		T1		
12modulation13SSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal19Representation of FM and PM signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224FM Demodulators25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse position modulation	de		25/04/23		T1		
13Modulation13SSB modulations14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal19Signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224FM Demodulators25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Receiver29Revision30Tutorial 431Sampling process32Pulse position modulation					T1		
14VSB modulations15Revision16Tutorial 217Angle modulation18Tone modulated FM signal19Representation of FM and PM signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224FM Demodulators25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Receiver29Revision30Tutorial 431Sampling process32Pulse position modulation			26/04/23				
15Revision16Tutorial 217Angle modulation18Tone modulated FM signal19Representation of FM and PM signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224FM Demodulators25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation			27/04/23		T1		
16Tutorial 217Angle modulation18Tone modulated FM signal19Representation of FM and PM signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224FM Demodulators25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Revision30Tutorial 431Sampling process33Pulse position modulation			29/04/23		T1		
17Angle modulation18Tone modulated FM signal19Representation of FM and PM19Signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224Tutorial 325Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation			30/04/23		T1		
18Tone modulated FM signal Representation of FM and PM signals19Signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224Tutorial 325Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulators28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process33Pulse position modulation			01/05/23				
19Representation of FM and PM signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224Tutorial 325Balance Slope Detector26FM demodulator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process33Pulse position modulation			02/05/23		T1		
19signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23224Tutorial 324FM Demodulators25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Receiver29Revision30Tutorial 431Sampling process33Pulse position modulation			03/05/23		T1		
Signals20FM Modulators21Indirect FM Modulators22Spectral characteristics of an modulated signals23223Tutorial 324FM Demodulators25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process33Pulse position modulation	1		04/05/23		T1		
21Indirect FM Modulators22Spectral characteristics of an modulated signals23223Tutorial 324FM Demodulators25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process33Pulse position modulation							
22Spectral characteristics of an modulated signals232Tutorial 3245Balance Slope Detector25Balance Slope DetectorFoster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process33Pulse position modulation			06/05/23		T1		
22modulated signals232Tutorial 324FM Demodulators25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation			08/05/23		T1		
232Tutorial 324FM Demodulators25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation	gle	CO2	09/05/23		T1		
24FM Demodulators25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation							
25Balance Slope Detector26Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation33Pulse position modulation	L1	CO2	10/05/23				
26Foster-Seeley Discriminator27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation33Pulse position modulation			11/05/23		T1		
27PLL FM demodulator28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation33Pulse position modulation			13/05/23		T1		
28Stereo FM transmitter & Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation33Pulse position modulation			18/05/23		T1		
28Receiver29Revision30Tutorial 431Sampling process32Pulse amplitude modulation33Pulse position modulation			20/05/23		T1		
29Revision30Tutorial 431Sampling process32Pulse amplitude modulation33Pulse position modulation			22/05/23		T1		
30Tutorial 431Sampling process32Pulse amplitude modulation33Pulse position modulation	—		23/05/23		T1		
31Sampling process32Pulse amplitude modulation33Pulse position modulation			24/05/23				
33 Pulse position modulation			25/05/23		T1		
1			27/05/23		T1		
34 Pulse width modulation			29/05/23		T1		
			30/05/23		T1		
35 4 Pulse width demodulation	L1	CO4	31/05/23		T1		
36 Pulse code modulation (PCM)		01/06/23		T1		
37 Tutorial 5			03/06/23				
38 Differential pulse code modulation			05/06/23		T1		

39		Delta modulation			06/06/23	T1	
40		Adaptive delta modulation			07/06/23	T1	
41		Noise considerations in PCM			08/06/23	T1	
42		Tutorial 6			10/06/23		
43		Digital multiplexers			12/06/23	T1	
44		Time division multiplexing			13/06/23	T1	
45		Digital modulation schemes			14/06/23	T1	
46		Phase shift keying			15/06/23	T1	
47		Frequency shift keying			17/06/23	T1	
48		Tutorial 7			22/06/23		
49		Frequency shift keying			24/06/23	T1	
50		Quadrature amplitude modulation			26/06/23	T1	
51	5	Continuous phase modulation and minimum shift keying	L1	CO5	27/06/23	T1	
52		Tutorial 8			28/06/23		
53		Review of probability and random process			01/07/23	T1	
54		Gaussian and white noise characteristics			03/07/23	T1	
55		Noise in amplitude modulation systems		C03	04/07/23	T1	
56		Noise in DSB modulation systems	L3		05/07/23	T1	
57		Noise in SSB modulation systems			06/07/23	T1	
58		Tutorial 9			08/07/23		
59	3	Noise in frequency modulation systems			10/07/23	T1	
60	э	Pre-emphasis and de-emphasis			11/07/23	T1	
61		Tutorial 10			12/07/23		
62		Revision &Test			12/07/23		
63		Revision &Test			12/07/23		
64		Revision &Test			13/07/23		
65		Revision &Test			15/07/23		
66		Revision &Test			17/07/23		
67		Revision &Test			18/07/23		
68		Revision &Test			19/07/23		
69		Revision & Test			20/07/23		
70		Revision &Test			21/07/23		

Syllabus for Sessionals:

Sessional	Syllabus
CT1	Class 1- Class 16
CT2	Class 17- Class 34
Pre - AKTU	Full Syllabus

*L1 – Remembering; L2 – Understanding; L3 – Applying; L4 – Analysing; L5 – Evaluating; L6 - Creating Literature:

Text Books:

1. RP SINGH "Communication System- Modern Digital and Analog' 3rd edition TMH India, 2006 **Reference Books:**

1. Taub H. and Schilling D.L., "Principles of Communication Systems, " RP SINGH Tata McGraw Hill,2001.

2. Haykin S., "Communications Systems," John Wiley and Sons, 2001

Sample Questions:

Question No.	Questions
1	Draw the Basic Block Diagram of Communication System
2	Explain why modulation is required?
3	Draw the amplitude modulated wave equation and explains each term with the help of frequency spectrum
4	Draw the block diagram high level AM transmitter and explain the function of each block.
5	With the help of block diagram explain the operation of a low level AM transmitter
6	What is angle modulation?
7	Define phase modulation?
8	Illustrate the relation between frequency modulation and phase modulation?
9	How the angle modulated wave forms are classified defends upon modulation index value?
10	Draw the block diagram of wideband FM transmitter based on Armstrong method of FM generation. Explain its operation.
11	State sampling theorem?
12	What is aliasing?
13	What is PAM?
14	Define adaptive delta modulation?
15	Explain adaptive delta modulation.
16	Explain in detail the Nyquist criterion for distortion less transmission of base band PAM signal
17	Explain the working of DPCM (Differential Pulse Code Modulation).
18	What do you understand by PCM (Pulse Code Modulation). Explain the working of PCM (Pulse Code Modulation).
19	What is Phase shift keying.
20	What is Frequency shift keying
21	Calculate the figure of merit in DSB-SC signal

22	Calculate the signal to noise ratio of frequency modulation . Also calculate noise figure
23	Write the short note on Pre-emphasis and De-emphasis
24	Explain the Digital modulation schemes
25	Explain the Noise in communication.

Assessment rubrics that is going to be adopted for direct attainment is depicted in below table

Level of Achievement	Elaboration on Course Grading Description	Bench Mark Set (Out of 100)
Excellent (A)	The Student's performance is outstanding in almost all the intended course learning outcomes	86 to 100
Very Good (B)	The student's performance is very good in most of the intended course learning outcomes.	76 to 85
Good (C)	The student's performance is good in most of the intended course learning outcomes.	61 to 75
Fair (D)	The student's performance is barely satisfactory.	46 to 60
Marginal(E)	The student's performance is marginally meets the intended course learning outcomes	30 to 45
Fail (F)	The Students performance is inadequate. Student fails to meet many of the intended course learning outcomes	Less than 30

NOTE: Have different Assessment pattern for tests, assignments, quizzes etc.

Staff In-charge

Buddha Institute of Technology Gorakhpur Department of Electronics and Communication Engineering ALLOTTMENT BASED ON COMPETENCY SKILLS Academic Session: April - July 2023

Name of the Staff	Arun Kumar Mishra
Area of Specialization	Digital Communication & Networking
Subject Allotted	Analog Circuits , Analog Circuits Lab

SI. #	Course Code	Course Title	Semester	Theory/Lab
1	KEC402	Analog Circuits	IV-A	Theory
2	KEC402	Analog Circuits	IV-B	Theory
3	KEC452	Analog Circuits Lab	IV-A	Lab
4	KEC452	Analog Circuits Lab	IV-B	Lab

Course Outcome and Programme Outcome

Program	: B. Tech.
Branch	: EC
Semester	: IV
Session	: 2022-23
Name of the Course	: Analog Circuits
Code	: KEC 402
Name of the Course Instructor	: Mr. Arun Kumar Mishra
Designation	: Assistant Professor
Department	: Electronic and Communication Engineering.

Description of the Course Outcome:

•

СО	After completion of the course students will be able to:
KEC 402.1	Use diodes and transistors in various electronic circuits.
KEC 402.2	Apply different feedback topologies.
KEC 402.3	Explain sinusoidal and non-sinusoidal oscillators.
KEC 402.4	Explain OP-AMP based electronic circuits
KEC 402.5	Design active Low- pass, High-pass, Band-pass and Band-reject filters.

Buddha Institute	of Technology, G	orakhpur		STITUTE OF TEL		
Department: Elec	unication Engg.		RUDEr			
Academic Semes	Academic Semester: April - July 2023					AKNYUL
Semester: IV	Course Code:	KEC402	Course: Analog Circuits			
Course Instructor	r: Mr. Arun Kuma	r Mishra	Contact H	Hours /wee	ek: 4+1	# of credits: 4
CIE Marks: 50	SEE Marks: 10	SEE Marks: 100		Exam Hours	5: 3	

Prerequisites if any:								
Code No	Course Name	Description	Semester					
KEC301	Electronic Devices	Basic Knowledge of semiconductor diode, BJT, MOSFET, etc	3					

Content delivery: Chalk & Board, PPT, Video Lectures	
--	--

	COURSE SYLLABUS:						
Module No	Contents of Module	Hrs	COs				
1	Diode circuits, amplifier models: Voltage amplifier, current amplifier, trans-conductance amplifier and trans-resistance amplifier. biasing schemes for BJT and FET amplifiers, bias stability, various configurations (such as CE/CS, CB/CG, CC/CD) and their features, small signal analysis, low frequency transistor models, estimation of voltage gain, input resistance, output resistance etc., design procedure for particular specifications, low frequency analysis of multistage amplifiers.	8	CO1				
2	High frequency transistor models, frequency response of single stage and multistage amplifiers, cascade amplifier, various classes of operation (Class A, B, AB, C etc.), their power efficiency and linearity issues, feedback topologies: Voltage series, current series, voltage shunt, current shunt, effect of feedback on gain, bandwidth etc., calculation with practical circuits, concept of stability, gain margin and phase margin.	8	CO1 & CO2				
3	Oscillators: Review of the basic concept, Barkhausen criterion, RC oscillators (phase shift, Wien bridge etc.), LC oscillators (Hartley, Colpitt, Clapp etc.), non-sinusoidal oscillators.	8	СОЗ				
4	Current mirror: Basic topology and its variants, V-I characteristics, output resistance and minimum sustainable voltage (VON), maximum usable load, differential amplifier: Basic structure and principle of operation, calculation of differential gain, common mode gain, CMRR and ICMR, Op-Amp design: Design of differential amplifier for a given specification, design of gain stages and output stages, compensation	8	CO4				
5	Op-Amp applications: Review of inverting and non-inverting amplifiers, integrator and differentiator, summing amplifier, precision rectifier, Schmitt trigger and its applications, active filters: Low pass, high pass, band pass and band stop, design guidelines.	8	CO4 & CO5				

KEC 402.1	Use diodes and transistors in various electronic circuits.
KEC 402.2	Apply different feedback topologies.
KEC 402.3	Explain sinusoidal and non-sinusoidal oscillators.
KEC 402.4	Explain OP-AMP based electronic circuits
KEC 402.5	Design active Low- pass, High-pass, Band-pass and Band-reject filters.

Mapping of CO v/s PO:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
KEC 402.1	1	1	1	1	-	-	-	-	-	-	-	2
KEC 402.2	3	3	2	1	-	-	-	-	-	-	-	2
KEC 402.3	1	1	-	-	-	-	-	-	-	-	-	1
KEC 402.4	3	2	2	-	-	-	-	-	-	-	-	-
KEC 402.5	2	2	2	1	-	-	-	-	-	-	-	1

Correlation levels: 1-Slight (Low) 2-Moderate (Medium) 3-Substantial (High)

Mapping of CO v/s PSO:

CO	PSO1	PSO2	PSO-3
KEC 402.1	2	2	-
KEC 402.2	2	2	-
KEC 402.3	-	-	-
KEC 402.4	1	-	-
KEC 402.5	2	1	-

Gap in the syllabus	NA

Topics to be covered	NA
beyond syllabus	

Assessment Methodologies:

-		
Sl. No.	Description	Туре
1	Student Assignment	Direct
2	Internal assessment	Direct
3	University exam	Direct
4	Student feedback	Indirect
5	Alumni feedback	Indirect

oyers feedback	Indirect
l	oyers feedback

LESSON PLAN (Section- IVA)

Lecture #	Modul e#	Topics	RBT Levels	Course Outcom e Mappin g	Planned Date	Actual Date	Faculty Sign	Remarks
1		Diode circuits						
2		Amplifier models: Voltage amplifier, current amplifier						
3		Trans-conductance amplifier and trans-resistance amplifier						
4		Biasing schemes for BJT amplifiers						
5		Tutorial						
		Weak Students (Remedial Class)						
6		Biasing schemes for FET amplifiers, bias stability						
7		CE, CB & CC configurations	L3	CO1 & CO2				
8	1	CS, CD & CG, configuration						
9		Small signal analysis, low frequency transistor models						
10		Tutorial	-					
		Weak Students (Remedial Class						
11		Estimation of voltage gain, input resistance, output resistance						
12		Design procedure for particular specifications,						
13		Low frequency analysis of multistage amplifiers						
14		Problems						
15	1	Tutorial	-					
	2	Weak Students (Remedial Class)						
16		High frequency transistor Model	L3	CO2				
17		Frequency response of single stage and multistage amplifiers						

18		Cascade amplifier					
10	-	Class A , Class B power					
19		Amplifier					
		Weak Students (Remedial					
		Class					
20	-	Tutorial					
20	-	Class AB , Class C power					
21		Amplifier					
	-						
		Weak Students (Remedial Class)					
		Feedback topologies: Voltage					
22		series, current series ,Voltage					
		shunt, current shunt					
		Effect of feedback on gain,					
23		bandwidth etc					
24		Calculation with practical					
24		circuits,					
25		Tutorial					
26		concept of stability , Gain					
20		margin and phase margin					
		Weak Students (Remedial					
		Class)					
		Oscillators: Review of the					
27		basic concept, Barkhausen					
		criterion					
28		Effects of positive feedback					
		on gain, bandwidth, stability					
29		RC oscillators, phase shift					
		oscillator					
30		Tutorial					
31	-	Wien bridge oscillator					
51		Weak Students (Remedial					
	3	Class)	L3	CO3			
	-	LC oscillators: Hartley					
32		oscillator, Colpitt oscillator					
	-						
33		Clapp oscillators					
	-						
34		Non-sinusoidal oscillators					
25	1	Tutorial					
35							
36		Problems					
50							
		Weak Students (Remedial					
	-	Class)					
37		Integrator and differentiator					
38	5	Summing amplifier	L3	CO4			
39	4	Precision rectifier					
	-						
40		Tutorial					
L	1			I	1	I	

	1							1
41		Schmitt trigger and its applications						
	1	Weak Students (Remedial Class)						
	1	Active filters: Low pass, High						
		pass Op-Amp design: Design						
42		of differential amplifier for a						
		given specification						
43		Band pass filter Design of gain stages and output stages						
		Weak Students (Remedial						
	-	Class)						
44		Band Reject Filteer						
45		Tutorial						
46		Problems						
47		Current mirror: Basic topology and its variants						
		V-I characteristics, output						
48		resistance and minimum						
		sustainable voltage (VON),						
		Weak Students (Remedial Class)						
	-	Differential amplifier: Basic						
49		structure and principle of						
		operation						
50		Tutorial						
	_	Calculation of differential		CO4 &				
51	4	gain, common mode gain,	L3	CO5				
51		CMRR and ICMR						
		Op-Amp design: Design of						
52		differential amplifier for a						
		given specification						
		Design of gain stages and						
53		output stages,						
		Compensation						
		Weak Students (Remedial						
	-	Class)						
54		Compensation						
55	-	Tutorial						
56		Revision						
57		Revision						
58		Revision						
		Weak Students (Remedial						
		Class)						
L	1				1	1	1	1

Test	No of Lectures
CT-1	
CT-2	
PAKTU	

*L1 – Remembering; L2 – Understanding; L3 – Applying; L4 – Analysing; L5 – Evaluating; L6 - Creating

Literature:

Text Books

A.S. Sedra and K.C. Smith, "Microelectronic Circuits," Saunder's College11, Publishing, 4th edition
 Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", PEARSON Education, 4th Edition.
 Reference Book

P. Raja, "Electronic Circuits" Umesh Publication

Question No.	Questions
1	What is emitter stabilization in self-bias circuit of an npn transistor in CE amplifier ? Explain high frequency response of common emitter amplifier
2	Sketch a family of CB output characteristics for a transistor. Indicate the active , cutoff, and saturation regions.
3	Name the different biasing methods of MOSFET. Describe in detail the biasing using a constant current source. Implement this biasing for the application of current mirror.
4	Draw the circuit diagram of CE amplifier. Replacing the transistor with hybrid π model deduce the expression for its voltage gain
5	What is bias stabilization? Explain the basic current mirror with suitable diagram
6	Draw the circuit of Phase-Shift oscillator and explain its working. State the advantages and disadvantages of this oscillator
7	Draw the circuit of Wien- bridge oscillator and find the expression for its frequency of oscillation. Will oscillation take place if bridge is balanced. Explain
8	Draw the circuit of a Clapp oscillator and derive the expression for frequency of oscillation
9	Draw the circuit of colpitts oscillator using Transistor device and find the expression for frequency of oscillation
10	Explain the properties of negative feedback
11	Design a series-series feedback amplifier and calculate expressions for A _f , R _{of} and R _{if.}
12	Explain how negative feedback affects gain, bandwidth and noise
13	Draw the circuit of difference amplifier using OP-AMP and apply superposition theorem to determine the common mode gain expression.
14	Draw the circuit diagram of inverting weighted summer and calculate the output voltage for the same.
15	Derive the expression for closed loop gain of non-inverting configuration of OP-AMP. What are its characteristics? Discuss the effect of finite open loop gain

Assessment rubrics that is going to be adopted for direct attainment is depicted in below table

Level of Achievement	Elaboration on Course Grading Description	Bench Mark Set (Out of 100)
Excellent (A)	Excellent (A) The Student's performance is outstanding in almost all the intended course learning outcomes	
Very Good (B)The student's performance is very good in most of the intended course learning outcomes.65 tr		65 to 79
Good (C) The student's performance is good in most of the intended course learning outcomes.		50 to 64
Satisfactory (D)	The student's performance is barely satisfactory.	40 to 49
Marginal(E)The student's performance is marginally meets the intended course learning outcomes		30 to 39
Fail (F)The Students performance is inadequate. Student fails to meet many of the intended course learning outcomesLe		Less than 30

NOTE: Have different Assessment pattern for tests, assignments, quizzes etc.

Staff In-charge

Buddha Institute of Technology

Gorakhpur

Department of Electronics & Communication Engineering ALLOTTMENT BASED ON COMPETENCY SKILLS

Acadomic Sossion April July 2022

Academic Session - April - July 2023

Name of the Staff	Prabha Kant Dwivedi
Area of Specialization	Signals and systems, Principles of Communication, Digital electronics, Electronic Devices
Subject Allotted	Signals and Systems

Sl.	Course Code	se Code Course Title Semester		Theory
#				
1	KEC-403	Signal System	IV-A	Theory
2	KEC-403	Signal System	IV-B	Theory
3	KEC -453	Signal SystemLab	IV-A	Lab
4	KEC -453	Signal SystemLab	IV-B	Lab

Course Outcome and Programme Outcome

Program	: B. Tech.
Branch	: EC
Semester	: IV
Session	: 2022-23
Name of the Course	: Signal System
Code	: KEC-403
Name of the Course Instructor	: Mr. Prabha Kant Dwivedi
Designation	: Assistant Professor
Department	: Electronics & Communication Engineering

Description of the Course Outcome:

СО	After completion of the course students will be able to:
KEC-403.1	Explain different types of signals and system properties.
KEC-403.2	Apply the concept of convolution to find the response of LSI system for differentinput signals.
KEC-403.3	Explain the idea of Eigen functions, Fourier series representation and different frequency transformation techniques like FT, DTFT, DFT, Z- transform and Laplace transform.
KEC-403.4	Analyze the behavior of discrete and continuous time LSI Systems by using respective frequency transformation techniques and convolution.
KEC-403.5	Explain the process and techniques of sampling and reconstruction, effect of under sampling and relation between continuous and discrete time systems.

Buddha Institute	e of Technology,	Gorakhpur		STITUTE OF TICE		
Department: Electronics & Communication Engg.				and a second		
Academic Semes	ster: April - July 2	2023				AKNYUL
Semester: IV	Section: A+B	Course Code:	KEC-403	Course: Signal System		
Course Instructor: Mr. Prabha Kant Dwiv			Contact Hours /week: 5+1 # of credi		# of credits: 4	
CIE Marks: 50	SEE Marks: 100		Exam Hour		rs: 3	

Prerequisites if any:								
Code No	Course Name	Description	Semester					
NA	NA	NA	NA					

Content	delivery:	Chalk & Board							
	COURSE SYLLABUS:								
ModuleNo		Contents of Module	Hrs	COs					
1	engineering discrete tin properties:	Signals and systems as seen in everyday life, and in various branches of engineering and science, energy and power signals, continuous and discrete time signals, continuous and discrete amplitude signals, system properties: linearity, additivity and homogeneity, shift-invariance, causality, stability, realizability.							
2	response, convergent shift invar equations a	inear shift-invariant (LSI) systems, impulse response and step esponse, convolution, input-output behaviour with aperiodic onvergent inputs, characterization of causality and stability of linear hift invariant systems, system representation through differential quations and difference equations, Periodic and semi-periodic inputs o an LSI system, the notion of a frequency response and its relation to							
3	Fourier convolution magnitude Fourier Tra Parseval's Laplace tra Eigen func	Fourier series representation, Fourier transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality , Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier transform (DFT), Parseval's Theorem, the idea of signal space and orthogonal bases, the Laplace transform, notion of Eigen functions of LSI systems, a basis of Eigen functions, region of convergence, poles and zeros of system, Laplace domain analysis, solution to differential equations and system							
4		The z-Transform for discrete time signals and systems-Eigen functions, region of convergence, z-domain analysis.							
5	reconstruct	ing theorem and its implications- spectra of sampled signals, ion: ideal interpolator, zero-order hold, first-order hold, and asing and its effects, relation between continuous and e systems.	8	C05					

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

KEC-403.1	Explain different types of signals and system properties.
KEC-403.2	Apply the concept of convolution to find the response of LSI system for different types of inputs and represent the system through differential and difference equations.
KEC-403.3	Explain the idea of Eigen functions, Fourier series representation and different frequency transformation techniques like FT, DTFT, DFT, Z- transform and Laplace transform.
KEC-403.4	Analyze the behavior of discrete and continuous time LSI Systems by using respective frequency transformation techniques and convolution.
KEC-403.5	Explain the process and techniques of sampling and reconstruction, effect of under sampling and relation between continuous and discrete time systems.

Mapping of CO v/s PO:

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
KEC-403.1	2	1	1	1	2	0	0	0	0	0	0	1	2	1	1
KEC-403.2	2	1	1	1	1	0	0	0	0	0	0	1	2	1	1
KEC-403.3	2	2	2	1	2	0	0	0	0	0	0	1	1	2	1
KEC-403.4	1	1	1	1	1	0	0	0	0	0	0	1	2	2	1
KEC-403.5	1	1	2	1	1	0	0	0	0	0	0	1	2	1	1
Average	1.6	1.2	1.4	1.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.8	1.4	1.0

Correlation levels: 1-Slight (Low) 2-Moderate (Medium)

3-Substantial (High)

Gap in the syllabus	NA

Topics to be covered	NA
beyond syllabus	

Assessment Methodologies:

Sl. No.	Description	Туре
1	Student Assignment	Direct
2	Internal assessment	Direct
3	University exam	Direct
4	Student feedback	Indirect
5	Alumni feedback	Indirect
6	Employers feedback	Indirect

LESSON PLAN

Lecture #	Modul e#	Topics	RBT Levels	Course Outcome Mapping	Planned Date	Actual Date	Referen ce	Faculty Sign	Remarks
1		Signals and systems as seen in everyday life, and in various branches of engineering and science							
2		Signals and systems as seen in everyday life, and in various branches of engineering and science							
3		energy and power signals							
4		continuous and discrete time							
5		signals continuous and discrete amplitude signals							
6		Tutoria1							
7	1	System properties	L2	C01					
8		linearity, additivity and homogeneity							
9		linearity, additivity and homogeneity							
11		shift-invariance, causality, stability, realizability.							
12		shift-invariance, causality, stability, realizability.							
13		Tutorial 2 Linear shift-invariant (LSI)							
14		systems							
15		impulse response and step response							
16		convolution							
17		input-output behavior with aperiodic convergent inputs							
18		characterization of causality and stability of linear shift invariant systems							
19		Tutorial 3							
20		system representation through differential equations and difference equations							
21		Periodic and semi-periodic inputs to an LSI system							
22	2	the notion of a frequency response and its relation to the impulse response	L2	CO2					
23		Fourier series representation							
24		Fourier series representation Tutorial 4							
25 26		convolution/multiplication and their effect in the frequency							
27		domain. convolution/multiplication and their effect in the frequency domain.							
28	1	magnitude and phase response							
20	1	Fourier domain duality							

		Discrete-Time Fourier Transform					
30		(DTFT)					
31		Tutorial 5	-				
		Discrete-Time Fourier Transform					
32		(DTFT)					
33		Discrete Fourier transform (DFT)					
34		Discrete Fourier transform (DFT)					
35		Parseval's Theorem	-				
		the idea of signal					
36		space and orthogonal bases					
37		Tutorial 6					
38		the Laplace transform					
39		the Laplace transform					
40		the Laplace transform					
41		notion of Eigen					
	3	functions of LSI systems	L3	CO3	 		
42		a basis of Eigen functions	-				
43		Tutorial 7					
44		region of convergence	-				
45		poles and zeros of system					
46 47		Laplace domain analysis Laplace domain analysis					
4/		Solution to differential equations					
48		and system behaviour.					
49		Tutorial 8	-				
7		Solution to differential equations					
50		and system behaviour.	-	C04			
		The z-Transform for discrete time					
51		signals					
		The z-Transform for discrete time					
52		signals					
= -		The z-Transform for discrete time					
53	4	signals	L3				
54		systems-Eigen functions					
55		Tutorial 9					
56		region of convergence					
57		z-domain analysis					
50		The sampling theorem and its					
58		implications					
59		spectra of sampled signals					
60		ideal interpolator					
61		Tutorial 10	-				
62		zero-order hold	-				
63		first-order hold					
64		aliasing and its effects,					
65	5	relation between continuous and	L3	CO5			
	-	discrete time systems. relation between continuous and		220			
66							
		discrete time systems.	-				
67		Revision	-				
68		Revision	-		 	 	
69		Revision	-				
70		Revision					

Sessional	Syllabus
CT1	Class 1- Class 18
CT2	Class 19- Class 44
Pre - AKTU	Full Syllabus

*L1 – Remembering; L2 – Understanding; L3 – Applying; L4 – Analysing; L5 – Evaluating; L6 - Creating

Literature:

Text Books:

1. RP SINGH "Communication System- Modern Digital and Analog' 3^{rd} edition TMH India, 2006

Reference Books:

2. Taub H. and Schilling D.L., "Principles of Communication Systems," RP SINGH Tata McGraw Hill,2001.3. Haykin S., "Communications Systems," John Wiley and Sons, 2001

Sample Questions:

Question No.	Questions
1	What are the different types of Signals?
2	Explain discrete-time system
3	What is unit ramp
4	Define continuous time system.
5	Discuss the unit impulse and unit step signals with suitable example.
6	Distinguish between energy and power signals.
7	Sketch the discrete time signal $x(n) = 2-n$ for $-3 < n < 3$ and obtain $Y(n) = x(n) + u(-n + 2)$.
8	Explain the principle of linearity of DT system.
9	State and prove sampling theorem.
10	State and prove final and initial value theorem of Laplace transform.
11	State and prove frequency shifting theorem of DTFT.
12	What is aliasing?
13	Plot the signal $y(t) = x\left(\left(-\frac{t}{2}\right)+3\right)$ where $x(t)$ is given as
14	State Parseval's theorem. Illustrate it with prper example.

Solve the differential equation using z-Transform method $x(n-2) -9x(n-1) + 18$ x(n) =
0. Initial conditions are $x(-1) = 1$, $x(-2) = 9$.
Describe the convolution integral with the help of an example.signal
What do understand by the one-sided Laplace Transform of signal? Explain. Also find the Laplace Transform of the signal $x(t) = e_{-3t} u(t) + e_{-2t} u(t)$ and find ROC.
Write a note on s-plane to z-plane mapping with appropriate example.
Explain the causality and stability with reference to a system with example.
Find fourier transform of the signal shown.
$ \begin{array}{c} & & & & \\ & & & \\ \hline \end{array} \\ \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline \end{array} \\ \hline \\ \hline & & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$
Find Laplace transform of the following function $F(s) = \frac{3s^2 + 8s + 6}{(s+2)(s^2 + 2s + 1)}$
Find the response of the following difference equation for step input. Assume zero initial conditions.
$y[n] - \frac{5}{6}y[n-1] + \frac{1}{6}y[n-2] = x[n] - \frac{1}{2}x[n-1]$
What is a LT1 system ? Check whether the system $y(t) = x^2(t)$ is a LT1 system.
Find the z-transform of $x[n] = \sin w_o n u[n]$
Find the Fourier transform of the Signal

Level of Achievement	Elaboration on Course Grading Description	Bench Mark Set (Out of 100)
Excellent (A)	The Student's performance is outstanding in almost all the intended course learning outcomes	75
Good (B)	The student's performance is good in most of the intended course learning outcomes.	60
Marginal (C)	The student's performance is barely satisfactory. It marginally meets the intended course learning outcomes	45
Fail (F)	The Students performance is inadequate. Student fails to meet many of the intended course learning outcomes	35

NOTE: Have different Assessment pattern for tests, assignments, quizzes etc.

Staff In-charge

HOD

Buddha Institute of Technology

Gorakhpur Department of Applied Science & Humanities - II ALLOTTMENT BASED ON COMPETENCY SKILLS Academic Session: April - July 2023

Name Of The Staff	Praveen Yadav
Area of Specialization	Human Resource Management and Marketing
Subject Allotted	Technical Communication

Sl. #	Course Code	Course Title	Semester	Theory
1	KAS401	Technical Communication	4	

HOD

Course Outcome and Programme Outcome

Program	: B.TECH
Branch	: C.E, M.E, C.S.E , IT , E.C (A) & E.C(B) .
Semester	: IV
Session	: 2022-2023 (April to August)
Name of the Course	: TECHNICAL COMMUNICATION
Code	: KAS 401
Name of the Course Instructor	: Praveen Yadav
Designation	: Lecturer
Department	: C.E, M.E, C.S.E , IT , E.C (A) & E.C(B)

Description of the Course Outcome:

СО	After completion of the course students will be able to:
KAS 301.1	use the nature and objective of Technical Communication relevant for the
	work place as Engineers.
KAS 301.2	implement the technical writing for the purposes of Technical
	Communication and its exposure in various dimensions.
KAS 301.3	use inputs by presentation skills to enhance confidence in face of diverse
	audience.
KAS 301.4	implement the vast know-how of the application of the learning to
	promote their technical competence and use it in their professional career.
KAS 301.5	use their efficacy as fluent & efficient communicators by learning the voice-
	dynamics.

Buddha Institute of T	echnology						STITUTE OF THE
Department: Electronic and communication engineering.							
Academic Semeste	er: AprilJuly20	23					BIT
Semester: 3 rd	Section: A & B	Course Code: KA	Course Code: KAS 301 Course Technical			l Con	nmunication
Course Instructor: Pr	Contact Hour		urs /week: 2+1			# of credits: 02	
CIE Marks: 50 SEE Ma		SEE Marks: 10	0		Exam H	Iours	: 3

Prerequisites	s if any:				
Code NoCourse NameDescriptionSemester					
NOT APPLICABLE					

Content delivery:	Chalk & Board, DLP, System/Laptop with social media videos
-------------------	--

	COURSE SYLLABUS:				
Module No	Contents of Module	Hrs	COs		
1	Fundamentals of Technical Communication: Technical Communication: Features; Distinction between General and Technical Communication; Language as a tool of Communication; Dimensions of Communication: Reading & comprehension; Technical writing: sentences; Paragraph; Technical style: Definition, types & Methods; The flow of Communication: Downward; upward, Lateral or Horizontal; Barriers to Communication.	3	C01		
2	Forms of Technical Communication: Technical Report: Definition & importance; Thesis/Project writing: structure & importance; synopsis writing: Methods; Technical research Paper writing: Methods & style; Seminar & Conference paper writing; Expert Technical Lecture: Theme clarity; Analysis & Findings; 7 Cs of effective business writing: concreteness, completeness, clarity, conciseness, courtesy, correctness, consideration, C.V./Resume writing; Technical Proposal: Types, Structure & Draft.	3	C02		
3	Technical Presentation: Strategies & Techniques Presentation: Forms; interpersonal Communication; Class room presentation; style; method; Individual conferencing: essentials: Public Speaking: method; Techniques: Clarity of substance; emotion; Humour; Modes of Presentation; Overcoming Stage Fear; Audience Analysis & retention of audience interest; Methods of Presentation: Interpersonal; Impersonal; Audience Participation: Quizzes & Interjections.	6	C03		
4	Technical Communication Skills:Interview skills; Group Discussion: Objective & Method;Seminar/Conferences Presentation skills: Focus; Content; Style;Argumentation skills: Devices: Analysis; Cohesion & Emphasis; Criticalthinking; Nuances: Exposition narration & Description; effectivebusinesscommunication competence: Grammatical; Discourse competence:	6	C04		

	combination of expression & conclusion; Socio-linguistic competence: Strategic competence: Solution of communication problems with verbal and non verbal means.		
5	Dimensions of Oral Communication & Voice Dynamics: Code and Content; Stimulus & Response; Encoding process; Decoding process; Pronunciation Etiquette; Syllables; Vowel sounds; Consonant sounds; Tone: Rising tone; Falling Tone; Flow in Speaking; Speaking with a purpose; Speech & personality; Professional Personality Attributes: Empathy; Considerateness; Leadership; Competence.	4	CO5

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

СО	After completion of the course students will be able to:
KAS 401.1	understand the nature and objective of Technical Communication relevant
	for the work place as Engineers.
KAS 401.2	utilize the technical writing for the purposes of Technical Communication
	and its exposure in various dimensions.
KAS 401.3	imbibe inputs by presentation skills to enhance confidence in face of
	diverse audience.
KAS 401.4	create a vast know-how of the application of the learning to promote their
	technical competence.
KAS 401.5	evaluate their efficacy as fluent & efficient communicators by learning the
	voice-dynamics.

Mapping of CO v/s PO:

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
KAS 401.1	-	-	-	-	-	-	-	-	-	-	-	-
KAS 401.2	-	-	-	-	-	-	-	-	-	-	-	-
KAS 401.3	-	-	-	-	-	•	-	-	-	-	-	-
KAS 401.4	-	-	-	-	-	-	-	-	-	-	-	-
KAS 401.5	-	-	-	-	-	-	-	-	-	-	-	-

Correlation levels: 1-Slight (Low)

2-Moderate (Medium)

3-Substantial (High)

Mapping of CO v/s PSO:

	PSO1	PSO2	PSO3
CSE641.1			
CSE641.2			
CSE641.3			
CSE641.4			
CSE641.5			
CSE641.6			

Gap in the syllabus	Practical approach

Topics to be covered	NA
beyond syllabus	

Assessment Methodologies:

Sl. No.	Description	Туре
1	Student Assignment	Direct
2	Internal assessment	Direct
3	University exam	Direct
4	Student feedback	Indirect
5	Alumni feedback	Indirect
6	Employers feedback	Indirect

LESSON PLAN

Lecture #	Modul e#	Topics	RBT Level S	Course Outco me Mappi ng	Planned Date	Actual Date	Fa cu lty Si gn	Remarks
1		Technical Communication: Features; Distinction between General and Technical Communication; Language as a tool of Communication; Dimensions of Communication:						
2	1	Reading & Comprehension; Technical writing: sentences; Paragraph; Technical style: Definition, types & Methods;	L2	C01				
3		The Flow of Communication: Downward; Upward, Lateral or Horizontal; Barriers to Communication.						
4	2	Technical Report: Definition & importance;	L2	CO2				

		Thesis/Project writing:					
		structure & importance;					
		Synopsis Writing:					
		Methods; Technical					
		Research Paper Writing:					
		Methods & Style;					
	_						
		Seminar & Conference					
		Paper Writing; Key-Note					
_		Speech: Introduction &					
5		Summarization; Expert					
		Technical Lecture: Theme					
		Clarity;					
	-	Analysis & Findings; 7 Cs					
		of Effective Business					
		Writing: Concreteness,					
6		Completeness, Clarity,					
0		Conciseness, Courtesy,					
		Correctness,					
		Consideration.					
		Presentation: Forms;					
		Interpersonal					
7		Communication; Class					
		Room Presentation; Style;					
	-	Method;					
		Individual conferencing: essentials: Public					
		Speaking: method;					
8		Techniques: Clarity of					
Ŭ		Substance; Emotion;					
		Humour;					
		Tumour,					
		Modes of Presentation;					
9	3	Overcoming Stage Fear:	L3	CO3			
		Confident Speaking;					
	-	Audience Analysis &					
		Retention of Audience					
10		Interest; Methods of					
10		Presentation:					
		Interpersonal;					
	-						
		Methods of Presentation :					
11		Impersonal; Audience					
11		Participation: Quizzes &					
		Interjections.					
12		Interview Skills; Group					
	4	Discussion: Objective &					
12		Method;	L2	<u> </u>			
13		Seminar/Conferences	L2	CO4			

		Presentation Skills: Focus;					
		Content; Style;					
14		Argumentation skills: Devices: Analysis;					
		Cohesion & Emphasis;					
		Critical Thinking; Nuances:					
		Exposition narration &					
15		Description; Nuances:					
		Exposition narration &					
		Description;					
		Discourse Competence:					
		combination of expression					
16		& conclusion; Socio-					
		linguistic Competence,					
		Strategic Competence:					
		Solution of communication					
17							
		problems with verbal and					
		non verbal means.					
		Kinesics: Definitions;					
18		Importance; Features of					
		Body Language;					
	5	Voice Modulation: Quality,					
19		Pitch;					
		Rhythm; intonation;					
20		Pronunciation;					
		Articulation;	L3	CO5			
21		Stress & Accent;					
		Linguistic Features Of					
22		Voice Control: Vowel &					
		Consonant Sounds.					

*L1 – Remembering; L2 – Understanding; L3 – Applying; L4 – Analysing; L5 – Evaluating; L6 - Creating Literature:

Books and References:

1. Technical Communication – Principles and Practices by Meenakshi Raman & Sangeeta

Sharma, Oxford Univ. Press, 2007, New Delhi.

- 2. Personality Development and Soft Skills by Barun K. Mitra, OUP, 2012, New Delhi.
- 3. Spoken English- A Manual of Speech and Phonetics by R.K.Bansal & J.B.Harrison,
- Orient Blackswan, 2013, New Delhi.
- 4. Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.
- 5. Practical Communication: Process and Practice by L.U.B. Pandey; A.I.T.B.S.

Publications India Ltd.; Krishan Nagar, 2014, Delhi.

6. Modern Technical Writing by Sherman, Theodore A (et.al); Apprentice Hall; New Jersey; U.S.

7. A Text Book of Scientific and Technical Writing by S.D. Sharma; Vikas Publication, Delhi.

8. Skills for Effective Business Communication by Michael Murphy, Harward University, U.S.

9. Business Communication for Managers by Payal Mehra, Pearson Publication, Delhi.

Sample Questions:

- 1. Define Technical Communication.
- 2. What is barrier to communication?
- 3. What do you mean by vocalization and sub-vocalization?
- 4. What is unity of paragraph writing?
- 5. Explain the term Comprehension.
- 6. What are the characteristics of Technical Communication? Differentiate between General Communication and Technical Communication.
- 7. Define technical writing and explain : a) User Manual b) Executive Summaries c)Employment Documents
- 8. Discuss the importance of language as a tool of communication.
- 9. Describe the various types of sentences. What are the salient features of sentence construction?
- 10. What are the requirements or features of writing a good paragraph?
- 11. What are the benefits of reading skills and how to improve the reading speed?
- 12. Explain in detail the different levels of communication and discuss the various types of the flow of communication.
- 13. What do you mean by barriers to communication? Describe in details the different types of barriers to communication.
- 14. Discuss the strategies for developing reading skills and also explain the strategies for improved comprehension reading.
- 15. Explain the 7 Cs of an effective communication.
- 16. What is AIDA structure of presentation? What are the different modes of presentation?
- 17. Explain the importance of critical thinking? Discuss the skills required for developing critical thinking.
- **18.** Describe the various vocal cues in an effective communication.
- 19. Explain how to give an effective presentation.
- 20. What are the professional personality attributes of an effective speaker?

Level of Achievement	Elaboration on Course Grading Description	Bench Mark Set (Out of 25)
Excellent (A)	The Student's performance is outstanding in almost all the intended course learning outcomes	21 to 25
Good (B)	The student's performance is good in most of the intended course learning outcomes.	15 to 20
Marginal (C)	The student's performance is barely satisfactory. It marginally meets the intended course learning outcomes	12 to 14

Fail (F)	The Students performance is inadequate. Student fails to meet many of the intended course learning outcomes	Less than 12
----------	---	--------------

Buddha Institute of Technology

Gorakhpur

Department of Electronic and Communication Engineering ALLOTTMENT BASED ON COMPETENCY SKILLS Academic Session: April – July 2023

Name of the Staff	Pallavi Dixit
Area of Specialization	Software engineering
Subject Allotted	Python Programming

Sl. #	Course Code	Course Title	Semester	Theory
1.	KNC-402	Python Programming	IV	Theory

HOD

Course Outcome and Programme Outcome

Program	: B.Tech
Branch	: EC
Semester	: IV
Session	: 2022-23
Name of the Course	: Python Programming
Code	: KNC-402
Name of the Course Instructor	: Pallavi Dixit
Designation	: Assistant Professor
Department	: Electronic and Communication Engineering

Description of the Course Outcome:

СО	After completion of the course students will be able to:
CO-1	Understand why Python is a useful scripting language for developers.
CO-2	To learn how to design and program Python applications.
CO-3	To learn how to use lists, tuples, and dictionaries in Python programs.
CO-4	To learn how to use class inheritance in Python for reusability.
CO-5	To do searching, sorting and merging in Python.

Buddha Institute of Technology, Gorakhpur						Sector Sector	TE OF THE
Department: Electronic and communication							
engineering.						501	AKHTUT
Academic Semester: AprilJuly2023							
Semester: IV	Section: A+B	Course Code: KNC-402			2 Course: Python Programming		
Course Instructo	Contact	ontact Hours /week: 04 # of cre		# of credits: 0			
CIE Marks: 25	SEE Marks: 5	0			Exam Hour	rs: 03	

Prerequisites if any:						
Code No	Course Name Description Seme					

Content delivery:	Chalk & Board
-------------------	---------------

	COURSE SYLLABUS:					
ModuleNo	Contents of Module	Hrs	COs			
1	Introduction: The Programming Cycle for Python , Python IDE, Interacting with Python Programs , Elements of Python, Type Conversion. Basics: Expressions, Assignment Statement, Arithmetic Operators, Operator Precedence, Boolean Expression.	6 Hrs	C01			
2	Conditionals: Conditional statement in Python (if-else statement, its working and execution), Nested-if statement and Elif statement in Python, Expression Evaluation & Float Representation. Loops: Purpose and working of loops, While loop including its working, For Loop, Nested Loops, Break and Continue.	5 Hrs	CO2			
3	Function: Parts of A Function, Execution of A Function, Keyword and Default Arguments, Scope Rules. Strings: Length of the string and perform Concatenation and Repeat operations in it. Indexing and Slicing of Strings. Python Data Structure : Tuples, Unpacking Sequences, Lists, Mutable Sequences, List Comprehension, Sets, Dictionaries Higher Order Functions: Treat functions as first class Objects, Lambda ExpressionsSieve of Eratosthenes: generate prime numbers with the help of an algorithm given by the Greek Mathematician named Eratosthenes, whose algorithm is known as Sieve of Eratosthenes. File I/O : File input and output operations in Python Programming.	5 Hrs	CO3			
4	Modules : Introduction, Importing Modules, Abstract Data Types : Abstract data types and ADT interface in Python Programming. Classes : Class definition and other operations in the classes, Special Methods (such as _init_, _str_, comparison methods and Arithmetic methods etc.), Class Example, Inheritance, Inheritance and OOP.	4 Hrs	CO4			
5	Iterators & Recursion: Recursive Fibonacci , Tower Of Hanoi Search : Simple Search and Estimating Search Time , Binary Search and Estimating Binary Search Time Sorting & Merging: Selection Sort , Merge List , Merge Sort , Higher Order Sort.	4 Hrs	CO5			

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

CO-1	Understand why Python is a useful scripting language for developers.
CO-2	To learn how to design and program Python applications.
CO-3	To learn how to use lists, tuples, and dictionaries in Python programs.
CO-4	To learn how to use class inheritance in Python for reusability.
CO-5	To do searching, sorting and merging in Python.

Mapping of CO v/s PO:

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
KNC-402	2	1	1	1	-		-			-	-	-
KNC-402	2	1	1	1	1		-			-	-	-
KNC-402	3	2	2	1	1		-			-	-	-
KNC-402	2	1	1	1	1		-			-	-	-
KNC-402	2	1	1	1	1		-			-	-	-

Correlation levels: 1-Slight (Low) 2-Moderate (Medium) 3-Substantial (High)

Mapping of CO v/s PSO:

	PSO1	PSO2
KNC-402	2	1
KNC-402	2	1
KNC-402	3	2
KNC-402	2	1
KNC-402	2	1

Gap in the syllabus	NO

Topics to be covered	1. Introduction of different software.
beyond syllabus	2. Goals And Objectives
	3. Unrealistic Deadlines
	4. Finding The Right Project Management Software
	5. Miscommunication Cause Conflicts
	6. Risk Management
	7. Challenges of Teamwork
	8. Lack of Accountability
	9. Earn Value Analysis
	10. CASE Tools
	11. Risk Breakdown Structure
	12. Bar charts

Assessment Methodologies:

Sl. No.	Description	Туре

1	Student Assignment	Direct
2	Internal assessment	Direct
3	University exam	Direct
4	Student feedback	Indirect
5	Alumni feedback	Indirect
6	Employers feedback	Indirect

LESSON PLAN

Lect ure #	Module #	Topics	RBT Leve ls	Course Outcom e	Planned Date	Actual Date	Faculty Sign	Remarks
				Mappin g				
1		Definition of Python? The Programming Cycle for Python and Python IDE		8				
2		Interacting with Python Programs and Elements of Python						
3	1	Type Conversion, Expressions	L3	CO1				
4		Assignment Statement						
5		Arithmetic Operators						
6		Operator Precedence & Boolean Expression						
7		Conditional statement in Python (if-else statement, its working and execution)						
8		Nested-if statement and Elif statement in Python						
9	2	Expression Evaluation & Float Representation	L2	CO2				
10		Purpose and working of loops, For Loop & Nested Loops						
11		Break and Continue						
12		Parts of A Function, Execution of A Function						
13		Keyword and Default Arguments, Scope Rules, Strings						
14	3	Tuples, Unpacking Sequences , List Comprehension	L2	CO3				
15		Lists , Mutable Sequences , Sets , Dictionaries						
16		Lambda Expressions &						

		File input and output operations in Python Programming				
17		Modules, Importing Modules				
18	4	Abstract data types, ADT & Classes	L2	CO4		
19		Special Methods, Inheritance				
20		00P				
21		Recursive Fibonacci				
22		Tower Of Hanoi, Simple Search, Estimating Search Time				
23	5	Binary Search, Estimatng Binary Search Time	L3	C05		
24]	Selection Sort , Merge List, Merge Sort, Higher Order Sort				

Syllabus for Sessionals:

CT1 Class 1	1- Class 20
CT2 Class 21	21- Class 47
Pre - AKTU	Full Syllabus

*L1 – Remembering; L2 – Understanding; L3 – Applying; L4 – Analysing; L5 – Evaluating; L6 - Creating

Literature:

Text Books

- 1. Pearson, "Introduction to Programming in Python"
- 2. Paul Gries, An Introduction to Computer Science using Python .

Reference Books

1. Charles Dierbach, —Introduction to Computer Science using Python: A Computational ProblemSolving Focus, Wiley India Edition, 2013.

2. Timothy A. Budd, - Exploring Python ||, Mc-Graw Hill Education (India) Private Ltd.,, 2015

Sample Questions:

Question	Questions
No.	

1	What is Python?
2	How Python is interpreted?
3	What is the difference between list and tuple?
4	How Python is interpreted?
5	What type of language is python?
6	What are the local variables and global variables in Python?
7	What are Python decorators?
8	What is lambda in Python?
9	Why lambda forms in python does not have statements?
10	How you can convert a number to a string?
11	What is module and package in Python?
12	Explain how can you make a Python Script executable on Unix?
13	Explain how to delete a file in Python?
14	Explain how can you access a module written in Python from C?
15	Mention five benefits of using Python?
16	Mention the use of the split function in Python?
17	You are having multiple Memcache servers running Python, in which one of the memcacher server fails, and it has your data, will it ever try to get key data from that one failed server?
18	Explain how you can access sessions in Flask?
19	Explain what is Flask & its benefits?
20	What is pickling and unpickling?
21	How Python is interpreted?
22	What is the difference between list and tuple?
23	Mention the use of the split function in Python?
24	How you can convert a number to a string?
25	What is module and package in Python?

Assessment rubrics that is going to be adopted for direct attainment is depicted in below table

Level of Achievement	Elaboration on Course Grading Description	Bench Mark Set (Out of 50)
Excellent (A)	The Student's performance is outstanding in almost all the intended course learning outcomes	40 to 50

Good (B) The student's performance is good in most of the intended course learning outcomes.		35 to 40
Marginal (C)	The student's performance is barely satisfactory. It marginally meets the intended course learning outcomes	25
Fail (F)	The Students performance is inadequate. Student fails to meet many of the intended course learning outcomes	Less than 20

Lab Name- Communication Engineering Lab (KEC-451)

SI. #	Experiment / Program	
1.	To study DSB/ SSB amplitude modulation & determine its modulation factor & power in side bands.	
2.	To study amplitude demodulation by Envelope detector	
3.	To study frequency modulation and determine its modulation factor.	
4.	To study sampling and reconstruction of Pulse Amplitude modulation system.	
5.	To Study of Pulse Width Modulation and Demodulation.	
6	To Study of Pulse code modulation (PCM) and its demodulation	
7.	Study of delta modulation and demodulation.	
8.	Study of Amplitude shift keying modulator and demodulator.	
9.	Study of Frequency shift keying modulator and demodulator.	

Lab Name- Analog Circuits Lab (KEC 452)

SI. #	Experiments
1	Study of BJT in CE configuration
2	Study Frequency response of single stage BJT amplifiers in CE configurations
3	Measurement of OP-AMP parameters
4	Application of OP-AMP as Integrator & Differentiator
5	Application of OP-AMP as summer and difference amplifier
6	To measure frequency of Wein Bridge Oscillator
7	To measure frequency and voltage of Phase Shift Oscillator
8	Study of Single stage common source FET amplifier

Lab Name- Signal System Lab (KEC-453)

SI. #	Experiment / Program	
1.	Introduction to MATLAB a. To define and use variables and functions in MATLAB. b. To define and use Vectors and Matrices in MATLAB. c. To study various MATLAB arithmetic operators and mathematical functions. d. To create and use m-files.	
2.	 Basic plotting of signals a. To study various MATLAB commands for creating two and three dimensional plots. b. b. Write a MATLAB program to plot the following continuous time and discrete time signals. i. Step Function ii. Impulse Function iii. Exponential Function iv. Ramp Function v. Sine Function 	
3.	Time and Amplitude transformations Write a MATLAB program to perform amplitude-scaling, time-scaling and timeshifting on a given signal.	
4.	Convolution of given signals Write a MATLAB program to obtain linear convolution of the given sequences.	
5.	 Autocorrelation and Cross-correlation a. Write a MATLAB program to compute autocorrelation of a sequence x(n) and verify the property. b. Write a MATLAB program to compute cross-correlation of sequences x(n) and y(n) and verify the property. 	
6	Fourier Series and Gibbs Phenomenon a. To calculate Fourier series coefficients associated with Square Wave. b. To Sum the first 10 terms and plot the Fourier series as a function of time.	

	c. To Sum the first 50 terms and plot the Fourier series as a function of time.
7.	Calculating transforms using MATLAB a. Calculate and plot Fourier transform of a given signal. b. Calculate and plot Z-transform of a given signal.
8.	Impulse response and Step response of a given system a. Write a MATLAB program to find the impulse response and step response of a system form its difference equation. b. Compute and plot the response of a given system to a given input.
9.	Pole-zero diagram and bode diagram a. Write a MATLAB program to find pole-zero diagram, bode diagram of a given system from the given system function. b. Write a MATLAB program to find, bode diagram of a given system from the given system function.
10	Frequency response of a system Write a MATLAB program to plot magnitude and phase response of a given system.
11	Checking linearity/non-linearity of a system using SIMULINK a. Build a system that amplifies a sine wave by a factor of two. b. Test the linearity of this system using SIMULINK.